Video and more...
This commit is contained in:
parent
14e6bcce9a
commit
99ed3d4427
@ -20,7 +20,7 @@ from sklearn.ensemble import ExtraTreesClassifier
|
||||
from sklearn.feature_selection import SelectFromModel
|
||||
|
||||
print("Loading dataset in memory [ ... ]")
|
||||
files = pd.read_csv('dataset_clean.txt',delimiter=',', low_memory=False)
|
||||
files = pd.read_csv('dataset/dataset_clean.txt',delimiter=',', low_memory=False)
|
||||
print("Loading dataset in memory [ DONE ]")
|
||||
|
||||
print("Dataset basic infos:")
|
||||
|
||||
@ -20,7 +20,7 @@ from sklearn.ensemble import ExtraTreesClassifier
|
||||
from sklearn.feature_selection import SelectFromModel
|
||||
|
||||
print("Loading dataset in memory [ ... ]")
|
||||
files = pd.read_csv('dataset_clean.txt',delimiter=',', low_memory=False)
|
||||
files = pd.read_csv('dataset/dataset_clean.txt',delimiter=',', low_memory=False)
|
||||
print("Loading dataset in memory [ DONE ]")
|
||||
|
||||
# =-=-=-=-=-=-=-= Data Prepare Work =-=-=-=-=-=-=
|
||||
|
||||
@ -121,18 +121,18 @@ def predict_one_line(model,line):
|
||||
# - At the end, print the prediction accuracy result
|
||||
|
||||
res = []
|
||||
#nb_malware_to_test = 50
|
||||
nb_malware_to_test = 34199
|
||||
nb_malware_to_test = 50
|
||||
#nb_malware_to_test = 34199
|
||||
good_ans = 0
|
||||
for i in range(34179,nb_malware_to_test):
|
||||
#for i in range(nb_malware_to_test):
|
||||
#for i in range(34179,nb_malware_to_test):
|
||||
for i in range(nb_malware_to_test):
|
||||
print(" =-=-=-= Prediction {} out of {} ({}%) [ ERT ~ {} min ] =-=-=-=".format(i, nb_malware_to_test, round((i/nb_malware_to_test)*100,1), round(((nb_malware_to_test-i)*1.2)/60,1)))
|
||||
features = file_to_test.values[i,]
|
||||
features_list = features.tolist()
|
||||
features_array = [features_list]
|
||||
features = np.array(features_array)
|
||||
res.append(predict_one_line(saved_model, features))
|
||||
if res[i-34179] == file_to_test.values[i,][54]:
|
||||
if res[i] == file_to_test.values[i,][54]:
|
||||
good_ans +=1
|
||||
print(features)
|
||||
print(res)
|
||||
|
||||
@ -199,8 +199,8 @@ def predict_from_features(features, model):
|
||||
X_unknown = features_numpy
|
||||
X_unknown_columns = selected_features
|
||||
X_unknown = pd.DataFrame(X_unknown, columns=X_unknown_columns)
|
||||
#ans = model.predict(X_unknown)
|
||||
ans = model.predict([features])
|
||||
ans = model.predict(X_unknown)
|
||||
#ans = model.predict([features])
|
||||
return ans[0]
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
BIN
tenamortech_malware_scanner_website_ihm.mp4
Normal file
BIN
tenamortech_malware_scanner_website_ihm.mp4
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user